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A common problem in passive acoustic based marine mammal monitoring is the contamination of
vocalizations by a noise source, such as a surface vessel. The conventional approach in improving
the vocalization signal to noise ratio �SNR� is to suppress the unwanted noise sources by
beamforming the measurements made using an array. In this paper, an alternative approach to
multi-channel underwater signal enhancement is proposed. Specifically, a blind source separation
algorithm that extracts the vocalization signal from two-channel noisy measurements is derived and
implemented. The proposed algorithm uses a robust decorrelation criterion to separate the
vocalization from background noise, and hence is suitable for low SNR measurements. To overcome
the convergence limitations resulting from temporally correlated recordings, the supervised affine
projection filter update rule is adapted to the unsupervised source separation framework. The
proposed method is evaluated using real West Indian manatee �Trichechus manatus latirostris�
vocalizations and watercraft emitted noise measurements made within a typical manatee habitat in
Florida. The results suggest that the proposed algorithm can improve the detection range of a
passive acoustic detector five times on average �for input SNR between −10 and 5 dB� using only
two receivers. © 2009 Acoustical Society of America. �DOI: 10.1121/1.3257549�

PACS number�s�: 43.60.Fg, 43.30.Sf, 43.60.Mn �EJS� Pages: 3062–3070
I. INTRODUCTION

A frequently encountered problem in passive acoustic
based marine mammal monitoring is the enhancement of vo-
calization signals in the presence of other interfering sources
and ambient noise. The presence of dominant noise sources
reduces the signal-to-noise ratio �SNR� of the measurements,
can degrade detection and classification performance, or re-
duce the effective range of a passive acoustic monitoring
system. A feasible implementation of a passive acoustic
based monitoring system operating in noisy environments
generally requires the enhancement of the vocalization sig-
nals. One such application related to marine mammals is the
enhancement of manatee vocalizations for more effective
passive acoustic based detection in the presence of recre-
ational watercraft. In this paper, a two-channel second-order-
statistics �SOS� based blind source separation �BSS� ap-
proach is developed and evaluated for enhancing manatee
vocalizations.

The West Indian manatee �Trichechus manatus latiros-
tris� was added to the endangered species list in 1967. In
1980, the U.S. Fish and Wildlife Service established a mana-
tee protection plan. Within this plan, collisions with recre-
ational boats and other watercraft were identified as the most
significant cause of unnatural manatee mortalities. Accord-
ingly, idle-speed and no-wake zones have been designated
throughout the shallow Florida waterways where manatee-
watercraft collisions are most likely to occur. However, a
2001 recovery review revealed that the rate of manatee-
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watercraft collision related mortalities continued to remain
high despite measures taken.1 Although the West Indian
manatee was recently re-classified as a threatened species
with a very high risk of extinction,2 data collected by the
Florida Fish and Wildlife Conservation Commission indicate
that watercraft related mortalities remain steady at 25%
among all manatee mortalities.3 Several reasons for the inef-
fectiveness of the speed zones have been put forth in the
recent literature. A factor that may contribute to the high rate
of collisions is the lack of compliance of boaters to year-long
and seasonal speed zones since these speed zones signifi-
cantly increase travel times within the Florida channels. In a
survey conducted at 15 sites in Florida, overall compliance
rates to speed zones were reported as 58% and 63%.4

One possible solution to improve compliance rates to
speed zones is an active boater warning system based on
passive acoustic detection of manatee vocalizations and
alerting nearby boaters of the presence of the animal. A typi-
cal manatee vocalization lasts between 0.1 and 0.5 s and may
have several harmonics in the frequency band of 2–10 kHz
�see Figs. 1�a� and 1�b��. Detailed information on manatee
vocalizations can be found in the works of Steel,5 Nowacek
et al.,6 Phillips et al.,7 and the references therein. It was
shown by Niezrecki et al.8 that a frequency domain energy
detector is capable of satisfactorily detecting manatee vocal-
izations in moderate SNR measurements. However, as the
noise levels increase relative to the vocalization source
strength, a signal enhancement procedure becomes necessary
prior to detection.9

In general, fluctuations in the underwater ambient noise
statistics warrant adaptive signal enhancement algorithms.

Several single channel, adaptive algorithms have been pro-
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posed for enhancing manatee vocalizations and other bioa-
coustic signals. Yan et al.10,11 proposed an adaptive line en-
hancer for enhancing manatee vocalizations. An adaptive
wavelet domain ad-hoc method for enhancing manatee vo-
calizations was developed by Gur and Niezrecki.12 More re-
cently, Ren et al.13 proposed a wavelet domain non-linear
adaptive filter for enhancing bioacoustic signals. The en-
hancement performances of conventional single channel
adaptive filtering methods drastically decline as the SNR of
the measurements decreases. However, if a significant por-
tion of background noise is emitted from a point noise source
such as a surface vessel, signal enhancement performance
can substantially be improved through multi-channel adap-
tive algorithms.

The conventional multi-channel approach to signal en-
hancement is beamforming through which measurements
from a uniform linear array �ULA� are constructively com-
bined to enhance the signal incident from the target source
location.14 Adaptive beamforming algorithms can also be de-
signed to suppress a dominant point noise source by placing
a null in the corresponding incidence direction. Several pas-
sive acoustic based detection, localization, and classification
systems that incorporate beamforming are described in the
literature.15,16 However, beamforming has some important
drawbacks. It requires the precise knowledge of the target
and noise source locations. In general, the location of the
sources is not known a priori, and the direction of arrival
�DOA� estimation for the vocalization signals must be per-
formed. The estimation of DOA and the related problem of
time difference of arrival �TDOA� estimation from noisy
manatee vocalization recordings were investigated by
Muanke and Niezrecki17 in the context of source localiza-
tion. The cited authors concluded that an input SNR of 8 dB
or higher was necessary on all the input channels for accu-
rately estimating the TDOA. Alternatively, the DOA can be
estimated using blind sub-space algorithms such as the mul-
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FIG. 1. ��a� and �c�� Time domain plots and ��b� and �d�� spectra of a
manatee vocalization and watercraft emitted noise, respectively �after high-
pass filtering�.
tiple signal classification algorithm or even by scanning each
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radial angle for high power incoming acoustic signals. How-
ever, the signal power of weak vocalization signals will gen-
erally be too low to determine the corresponding DOA using
such methods. The ability of a beamformer to resolve the
location of the target is inversely proportional to the length
of the discrete aperture formed by the ULA. Combined with
sensor spacing restrictions necessary to avoid spatial alias-
ing, enhancing marine mammal vocalizations requires an ar-
ray that consists of many �on the order of 10 or more� hy-
drophones. Hence, beamforming is not a cost-effective
solution to enhance manatee vocalizations in the numerous
manatee idle-speed/no-wake zones within the Florida water-
ways.

As an alternative, BSS is a class of adaptive signal pro-
cessing algorithms that serve for retrieving the original sig-
nals emitted from multiple point sources from multi-channel
mixtures. These algorithms are referred to as “blind” because
both the source signals and the mixing channels are assumed
to be unknown. The signals emitted from multiple acoustic
point sources are assumed to be statistically independent,
which can be physically justified. Due to transmission
through a multi-input, multi-output mixing channel, the
acoustic signals measured at the receivers become statisti-
cally dependent. The original sources can be extracted from
the measurements by solving for a separating solution that
makes the multi-channel measurements statistically indepen-
dent. The separated sources are retrieved from the measure-
ments using unsupervised adaptive filtering �see Fig. 2 for a
two-channel setup�. BSS algorithms can be separated into
several different groups based on the implementation of the
statistical independence criterion. Most of these algorithms
utilize the known or estimated probability density function
�PDF� and/or higher-order-statistics �HOS� of the acoustic
source signals to achieve source separation. Unfortunately,
accurate estimates of the source PDF and HOS of weak vo-
calizations from noisy measurements are very difficult to ob-
tain. However, a separate group of SOS based algorithms
achieves source separation by making the outputs uncorre-
lated, which result in less complex and more robust algo-
rithms for two-channel setups.

Source separation, particularly its applications in speech
enhancement and communications, is a topic that has re-
ceived high interest among researchers over the past decade

FIG. 2. The typical setup of a two-channel BSS problem.
�for a concise review, see Ref. 18�. In the context of signal
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enhancement, separation of the vocalization and noise sig-
nals suggests an improvement in the SNR of the vocalization
signal. Therefore, BSS algorithms are versatile methods for
enhancing marine mammal �e.g., manatee� vocalizations cor-
rupted by an interfering point source such as watercraft navi-
gating through the channel. Despite the extensive literature
on speech and communications source separation, only a few
studies implement source separation in the context of under-
water acoustics. Gaeta et al.19 suggested a HOS based blind
separation of artificially mixed underwater acoustic signals.
They numerically computed the channel impulse responses
using ray propagation theory. Bonnifay et al.20 incorporated
prior knowledge of the channel impulse responses in a HOS
based source separation algorithm and experimented with ar-
tificially mixed underwater communication signals. More re-
cently, Mansour et al.21 investigated blind separation of un-
derwater acoustic signals �including artificial mixtures of
ship noise and whale vocalizations� for passive acoustic to-
mography and reported that SOS based frequency domain
iterative algorithms exploiting the non-stationarity of the
source signals resulted in better separation performance.

In this study, a new SOS based BSS algorithm for en-
hancing marine mammal vocalizations is proposed and
evaluated using real vocalization and watercraft emitted
noise measurements. This paper is organized as follows. A
novel SOS-BSS algorithm based on the affine projection
�AP� filter update rule is proposed in Sec. II. The signal
enhancement performance of the proposed SOS-BSS algo-
rithm is evaluated using real measurements in Sec. III. The
improvements in the detection range resulting from prepro-
cessing the measurements with these algorithms are pre-
sented in Sec. IV. Lastly, the concluding remarks are pro-
vided in Sec. V.

II. THEORETICAL DEVELOPMENT

A. The underwater acoustic channel model

The mixing channel model is depicted in Fig. 3�a� where
the two measurements X= �x1 x2�T are a result of a linear
mixture of the two sources S= �s1 s2�T �assuming that the s1

is the vocalization signal� and ambient noise V= �v1 v2�T,

X = H � S + V , �1�

where � represents time domain convolution, and H is a
matrix of finite impulse response �FIR� filters modeling mul-
tipath channel transmission. In the context of source separa-
tion, the source signals are assumed to be more dominant
compared to ambient noise. The channel mixing process can
be separated into two stages, as shown in Fig. 3�b�; the
propagation of the source signals through the convolutive
channel is represented by the impulse responses h11 and h22,
and the cross-channel mixing of the sources is represented

by the pseudochannel impulse responses h̃12=h12 /h11 and

h21=h21 /h22. Simple decorrelation can be used to extract the
source signals s̃1 and s̃2, but is not sufficient to retrieve the
original sources s1 and s2. Additional known properties of the
source signals such as non-stationarity22 or temporal
correlation23 need to be exploited to perform simultaneous

separation and deconvolution. Alternatively, deconvolution
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can be performed postseparation.24 Although s̃1 is a filtered
version of the original vocalization signal, it is sufficient to
extract this filtered signal for detection purposes.

B. Second-order-statistics based blind source
separation

Decorrelation based algorithms employ a SOS based
cost function of the de-mixing system outputs for achieving
source separation. Adaptively decorrelating the outputs

E�yp�n�yq�n − k�� = rypyq
�n,k� = 0, p � q = 1,2, �2�

where E� · � is the expectation operator, yp is the output at
the pth channel and rypyq

�n ,k� is the cross correlation coeffi-
cient between the outputs at time n and lag k, is anticipated
to result in source separation. Assuming a two-channel mix-
ing system, a cost function that uses the instantaneous esti-
mate of the correlation between the two outputs at L lags
combined with a stochastic gradient update rule results in
the SOS based symmetric adaptive decorrelator �SAD�
algorithm25 with a filter update structure similar to the least
mean squares �LMS� algorithm. The SAD algorithm is a
simple and robust BSS algorithm suitable for source separa-
tion in the two-input, two-output configuration.

However, the SAD algorithm also inherits the limita-
tions of the LMS algorithm. Due to the large eigenvalue

FIG. 3. �a� The two-channel transmission model and �b� the channel model
with channel propagation and mixing stages decoupled.
spread of the input autocorrelation matrix, the convergence
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of the filter coefficients is rather slow in the presence of
temporally correlated inputs �such as the harmonic manatee
vocalizations that require small step sizes to prevent the
separating filters from destabilizing�.26 The small step sizes
required for stability reduce the ability of the de-mixing fil-
ters to adapt to changes in the noise signal statistics or to
track the changes in the channel impulse responses due to
moving watercraft. One possible solution to improve the
convergence rate of the SAD algorithm is to update the adap-
tive filters using the recursive least squares �RLS�
algorithm.27 The resulting double-RLS �DRLS� algorithm
eliminates the large eigenvalue spread of the filter inputs by
pre-multiplying the inputs with a recursive estimate of the
inverse of the cross-correlation matrix between the inputs
and filtered outputs. However, the DRLS algorithm is prone
to the same divergence phenomenon observed in supervised
RLS algorithms caused by numerical instabilities.28 To fur-
ther aggravate the problem, the use of the input and output
cross-covariance matrices in the DRLS algorithm �in contrast
to the Toeplitz input autocorrelation matrix, in case of the
supervised RLS algorithm� prevents fast and numerically
more stable QR-decomposition based implementations.

C. The proposed method

The AP algorithm29 was proposed in the context of su-
pervised adaptive filtering as an intermediate algorithm be-
tween the LMS and RLS algorithms. Instead of the inverse
of the full order L�L input autocorrelation matrix �where L
is the filter order�, the AP algorithm uses the inverse of a
K�K lower order partial autocorrelation matrix �where K
�L� to pre-whiten the input data. In this paper, an unsuper-
vised BSS algorithm based on the supervised AP algorithm is
derived and implemented for the two-channel configuration.
The extension of the supervised AP algorithm to the unsu-
pervised adaptive filtering framework was first proposed by
Gabrea.30 The cited author proposed a feedback structured
block-update double affine projection �DAP� algorithm in the
context of two-channel speech enhancement. However, the
feedback structure may cause instability. In addition, the K
�K partial autocorrelation matrix will always be incomplete
due to the block-update restriction, leading to degraded sepa-
ration performance. Hence, to circumvent these problems, a
feedforward �FF� implementation of the DAP algorithm with
sequential update �SU� of the filter coefficients is proposed.
The block diagram of the feedforward setup is depicted in
Fig. 4. The FF/SU DAP algorithm solves for the separating
filters by computing the minimum squared norm filter update
such that the updated filter decorrelates the past K lag cross-

˜

FIG. 4. The block diagram of the two-channel feedforward structured de-
mixing system.
correlations between the intermediate outputs y1�n� and
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y2�n�, where K�L and L is the maximum order of the cross-
channel filters. This criterion can be expressed as the cost
function

Jp�n� = ��wpq�n + 1� − wpq�n��2�2

+ E�ỹp,K
T �n�ỹq�n���, p � q = 1,2, �3�

where � is the K�1 vector of Lagrange multipliers and the
K�1 intermediate output vector ỹp,K�n� is defined as

ỹp,K�n� = xp,K�n� − Xq
H�n�wpq�n + 1� , �4�

and where Xq�n�= �xq,L�n� xq,L�n−1� ¯ xq,L�n−K+1�� is an
L�K matrix of the past filter outputs. Replacing the cross-
correlations with their instantaneous estimates �i.e., E�ypyq�
=ypyq�, using a stochastic gradient descent optimization rule,
and after some algebraic manipulation, the resulting filter
update equations take the form

wpq�n + 1� = wpq�n� + �Xq�n��Xq
T�n�Xq�n� + �I�−1ỹp,K�n� .

�5�

Here, � is the step size and � is a regularization term added
diagonally to prevent numerical difficulties in inverting the
possibly rank deficient matrix Xq

TXq. More detailed deriva-
tions of the FF/SU DAP algorithm as well as some other
related BSS algorithms can be found in Ref. 31.

D. Performance measures

Well defined, quantitative performance measures are
necessary for objectively evaluating the signal enhancement
performances of the proposed BSS algorithm. In this paper,
two performance measures are utilized to evaluate the signal
enhancement performance of the FF/SU DAP algorithm. The
pre-denoising quality of a noisy vocalization signal is quan-
tified in terms of the input SNR which is defined for each
input channel as the ratio of the squared root-mean-square
�rms� values of the vocalization and noise signals

SNRin,p = 10 log10��srms,p�2/�vrms,p�2�, p = 1,2, �6�

where p is the channel index, and sp�n� and vp�n� are the
vocalization and noise signals at channel p, respectively. The
rms value of the length N signal x�n� is defined as

xrms = � 1

N
�
n=0

N−1

�x�n��2�1/2

. �7�

The noise signal in the denominator of Eq. �6� represents all
signals �including watercraft emitted noise� other than the
vocalization signal. The rms value of the noise signal is com-
puted over the duration of the vocalization signal. In general,
the SNR at the input channels may vary. In contrast, a single
output SNR is defined as

SNRout = 10 log10���yrms,s�2 − �yrms,v�2�/�yrms,v�2� , �8�

where yrms,s is the rms value of the enhanced estimate of the
vocalization signal and yrms,v is the rms value of the output if
no vocalization is present. Thus, yrms,v represents the noise
residue that is not suppressed by the algorithm over the du-

ration of the vocalization.

and C. Niezrecki: Marine mammal vocalization enhancement 3065



The signal-to-distortion ratio �SDR� is defined as the
ratio of the vocalization signal and distortion power

SDR = 10 log10��srms�2/�erms�2� , �9�

where s�n� is the vocalization signal, and the distortion is
defined as the mean-squared-error

erms = � 1

N
�
n=0

N−1

�e�n��2�1/2

= � 1

N
�
n=0

N−1

�s�n� − ys�n��2�1/2

,

�10�

and ys�n� is the enhanced estimate of the vocalization signal.
The SDR is an indicator of how well the vocalization wave-
form is preserved, which strongly affects the detection rate of
a matched filter detector or other similar correlation based
detectors, and the accuracy of source localization algorithms
based on TDOA estimates.

III. EXPERIMENTAL RESULTS

The underwater acoustic environment is very challeng-
ing in terms of propagation. The acoustic propagating chan-
nel has certain dynamics that cannot be modeled accurately
with a FIR filter. Unfortunately, these undesired channel ef-
fects are more pronounced in shallow water channels, prima-
rily due to the complex interaction of the acoustic waves
with the waveguide boundaries, volumetric inhomogeneities
in the water, and other uncertainties inherent to the underwa-
ter acoustic channel. The underwater acoustic channel is fre-
quency selective and can significantly attenuate high fre-
quency signal energy. Another factor that results in
frequency selective attenuation of underwater acoustic sig-
nals is the Lloyd mirror effect. All of these factors reduce the
coherence of the signals measured at different receivers,
which may affect the convergence and signal enhancement
performance of the BSS algorithms. Thus, it is essential to
evaluate the proposed FF/SU DAP algorithm under real en-
vironments to be able to fully comprehend their signal en-
hancement performances.

To evaluate the performance of the FF/SU DAP algo-
rithm under realistic conditions, real vocalization and noise
data were recorded at Crystal River, FL. The test location
where the background noise data were collected is at close
proximity to known manatee habitats and a busy waterway,
and thus represents a pilot site where a manatee vocalization
detector may potentially be implemented. Therefore, the re-
sults presented here are expected to be good indicators of
how these algorithms are expected to perform in-field.

In speech processing, speech signals are generally re-
corded in an anechoic chamber in order to obtain reverberant
free source signals, and then convolved with an experimen-
tally measured or numerically simulated reverberant impulse
response. Thus, the source signals and the channel impulse
responses are known a priori and can be used to evaluate the
SNR and SDR performances of the algorithms as well as the
convergence of the de-mixing filters to the optimum separat-
ing solution. Alternatively, to obtain more realistic mixtures,
the speech signals are recorded separately �but in the same

environment� and are numerically superposed to create the
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noisy measurements.32 Both experimental setups used in
speech processing are not feasible for marine mammal moni-
toring applications. Nevertheless, in an effort to generate as
realistic noisy vocalization recordings as possible, the vocal-
izations in the manatee vocalization library33 are convolved
with actual measured underwater acoustic channel impulse
responses and added to real background noise recordings.
The channel impulse responses used to convolve manatee
vocalizations are estimated from a series of broadband
broadcast tests conducted at Crystal River, FL on the same
day and location as the background noise recordings. A typi-
cal impulse response obtained from the broadcast tests is
presented in Fig. 5 where the underwater speaker is placed
10.3 m away from the reference hydrophone.

The performance of the FF/SU DAP algorithm is evalu-
ated in a two-channel setup which consists of a manatee and
a watercraft as the only two active acoustic point sources. In
general, the input SNR is a function of the vocalization and
watercraft emitted noise source levels �SLs� as well as the
channel attenuation. Channel attenuation is determined by
the channel impulse responses, whereas both the vocalization
and watercraft emitted noise SL may change.7,9 To compen-
sate for the variance in the SL of both the manatee vocaliza-
tions and watercraft emitted noise, the input SNR is con-
trolled by scaling the power of the vocalization signal such
that the input SNR at the reference channel of the vocaliza-
tions is equal to pre-specified values. Another important fac-
tor that reduces the SNR and the separation performance of
the proposed BSS algorithm is the presence of extraneous
noise. The ambient background noise levels measured at the
Crystal River test site when no point source was active �i.e.,
no watercraft in the vicinity� were determined to be lower
than −12 dB compared to typical watercraft emitted noise
throughout the measurements. The diffuse ambient noise lev-
els were used to estimate the lowest input SNR that the
FF/SU DAP algorithm was expected to achieve acceptable
signal enhancement performance. Since manatee vocaliza-
tions are generally 0.5 s or shorter in duration, several wa-
tercraft noise recordings, each of 1 s duration, were selected
from the measurements �see Figs. 1�c� and 1�d��. The ap-
proach direction and the relative speed of each watercraft
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FIG. 5. A typical channel impulse response estimated from broadband
broadcast tests conducted in Crystal River, FL.
were noted during the recordings. Both the vocalization and
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noise signals were high-pass filtered using tenth order But-
terworth filter with a cutoff frequency of 1 kHz. The filter
order, step size, and cross correlation delay for the FF/SU
DAP algorithm were set to L=200, �=0.01, and K=10, re-
spectively.

The output SNR and SDR results averaged over ten
manatee vocalizations and four different noise recordings
are presented in Fig. 6. For these tests, it was assumed that
the manatee was 1 m away from the reference hydrophone.
The other hydrophone is located 9.3 m away. The input SNR
at the vocalization reference channel is varied from
−10 to 5 dB. The input SNR at the other channel is not ma-
nipulated, but rather is determined by the channel impulse
responses, and is usually 5–10 dB lower than the input SNR.
A typical time domain output of the FF/SU DAP algorithm is
presented in Fig. 7 for −5 dB input SNR on channel 1.

As is discussed in Sec. II, the cross channel transfer
function is more relevant for BSS algorithms. The results
presented above are obtained for manatee vocalizations con-
volved with a channel impulse response between two hydro-
phones �separated by 9.3 m� where the manatee is assumed
to be 1 m away from the reference hydrophone.

In the following tests, the effect of changing the distance
between the manatee and the corresponding reference hydro-
phone on the performance of the FF/SU DAP algorithm is
investigated. The separation between the hydrophones is
fixed at 9.3 m, and the manatee is assumed to be at distances
of 1, 4.7, 10.3, and 13.9 m away from the reference hydro-
phone. Although the distance between the hydrophones re-
mains the same, the pseudochannel impulse response
changes as the range of the manatee is increased. The output
SNR and SDR results obtained with the manatee assumed to
be at the four different locations are presented in Fig. 8.
These results suggest that the signal enhancement perfor-
mance of the FF/SU DAP algorithm is not significantly af-
fected by changes in the channel transfer function between
the manatee and the corresponding reference receiver, par-
ticularly at low input SNR values. Moreover, these results
prove that the detection range resulting from processing the
noisy vocalizations with the FF/SU DAP algorithm is only a
function of the input SNR. This conclusion simplifies the
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detection range computations presented in Sec. IV.
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IV. DETECTION RANGE IMPROVEMENTS

The signal enhancement performance of the FF/SU DAP
algorithm can be related to the improvements in the detection
range through the passive sonar equation written in terms of
the figure of merit �FOM�

FOM = SLm − max�NLa,SLw − TLw� + AG − DT, �11�

where SLm is the source level of the vocalizations, NLa is the
ambient noise levels, SLw is the boat source level, TLw is the
transmission loss associated with the watercraft, AG is the
array gain, and DT is the detection threshold of the vocaliza-
tion detector.9 The source levels are the sound pressure levels
�referenced to 1 �Pa� located 1 m from the source. The
FOM represents the maximum allowable transmission loss,
and hence the maximum range at which the animal can be
detected by the passive acoustic system. Assuming that the
transmission loss obeys a mixed spreading model,9 the FOM
can also be expressed as a function of the range of the mana-
tee to the hydrophones

FOM = 15 log10�rm� . �12�

Equating Eqs. �11� and �12� and solving for the range of the
manatee, one obtains

r = 10�SLm−max�NLa,SLw−15 log10�rw��+AG−DT�/15. �13�
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FIG. 7. �a� A clean manatee vocalization in the time domain, �b� the noisy
measurement with input SNR equal to −5 dB on channel 1, and �c� the time
domain output of the FF/SU DAP algorithm �plots are for the channel 1
measurements; the input SNR for channel 2 is −13.4 dB�.
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The ratio of the detection range resulting from the FF/SU
DAP algorithm to high-pass filtering detection range can be
computed using the relation

�rm�DAP

�rm�HPF
= 10AG/15. �14�

The AG term is defined as the improvement in the SNR with
respect to the single receiver input SNR. Thus, for the FF/SU
DAP algorithm, AG is defined as the improvement in the
SNR,

AG = SNRout − SNRin. �15�

The average ratio of the detection ranges resulting from
the FF/SU DAP algorithm over high-pass filtering for the
Crystal River test cases is presented in Fig. 9. The FF/SU
DAP algorithm achieves a relatively uniform output SNR
performance over the input SNR values and can improve the
detection range by a factor of 4.7 or higher for input SNR
varying from −10 to 5 dB.

Next, the detection ranges resulting from processing the
vocalizations with the FF/SU DAP algorithm are presented
using an example. The watercraft noise and manatee vocal-
ization SL are assumed to be 140 and 118 dB, respectively.
Ambient noise is assumed to be 70 dB. For a given output
SNR, it is necessary to compute the input SNR �and thus, the
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FIG. 8. �a� The output SNR and �b� the SDR performance measures for
different manatee ranges as a function of the input SNR for the FF/SU DAP
algorithm.
AG� for the FF/SU DAP algorithm. To obtain an analytic
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relation between the input and the output SNRs, the output
SNR for the Crystal River test cases is curve fitted with a
first order polynomial

SNRout = 0.9734 · �SNRin� + 10.2057 �16�

in the least squared sense.34 Equation �16� suggests that an
average of 10.2 dB AG can be achieved with the FF/SU
DAP algorithm. For the FF/SU DAP algorithm implemented
together with a 3 dB DT passive acoustic detector, the AG is
10.4 dB and the minimum input SNR necessary for detection
is computed as −7.4 dB. The ratio of the estimated detection
range resulting from the FF/SU DAP algorithm and high-
pass filtering is computed as 4.9 for a DT of 3 dB. The
maximum detection range as a function of the detection
threshold and range of the watercraft are depicted in Fig. 10.
Although the detection range drops below 10 m when the
watercraft is 100 m away from the receivers with the FF/SU
DAP algorithm, the proposed method significantly increases
the detection range �approximately five times� and the effec-
tive coverage area �approximately 25 times� of a passive
acoustic based detector compared to a high-pass filter alone.

For the setup in this study, the manatee and watercraft
are assumed to be closer to hydrophones 1 and 2, respec-
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FIG. 9. The average ratio of the detection range resulting from the FF/SU
DAP algorithm to high-pass filtering for the Crystal River tests.
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tively. Accordingly, it can be shown that the separated vocal-
ization and watercraft noise signals are retrieved from chan-
nels 1 and 2, respectively.27 Since the location of the animal
is not known in advance, both channels have to be monitored
by a detector.

The separation performance of the FF/SU DAP algo-
rithm depends on the coherence between the measurements.
The separation and signal enhancement performance reduces
as the cross-channel coherences drop. There are several fac-
tors that may affect inter-channel coherence. A greater sepa-
ration between the hydrophones increases the coverage area
of the passive detection system, but also reduces the coher-
ence. Hence, there is a trade-off between coverage and per-
formance. In addition, the acoustic signals recorded from a
small recreational watercraft departing away from the hydro-
phones are relatively incoherent due to the scatter from cavi-
tation of the propeller. Thus, the proposed system will en-
hance vocalization signals particularly in the presence of an
approaching vessel. Increase in the ambient diffuse noise
field �e.g., when precipitating� also results in reduced coher-
ence. For cases in which the coherence drops below a certain
level, the FF/SU DAP algorithm can be reconfigured to func-
tion as a single channel supervised adaptive noise canceller
implemented with the affine projection update rule �by forc-
ing one of the de-mixing filters to function as an all-pass
unity filter�.

V. CONCLUSIONS

The problem of enhancing marine mammal vocaliza-
tions in the presence of an interfering acoustic source is ad-
dressed in this paper. The conventional approach to under-
water signal enhancement is to use expensive directional
receivers such as vector sensors or to beamform the measure-
ments from an array of many omni-directional hydrophones.
As a low-cost alternative to these methods, a two-channel,
unsupervised, adaptive source separation approach is pro-
posed for enhancing noisy manatee vocalizations. The pre-
sented FF/SU DAP algorithm uses the affine projection up-
date rule to be able to maintain a satisfactory convergence
speed in the presence of dynamic underwater mixing chan-
nels �due to the motion of watercraft� and temporally corre-
lated vocalizations. The FF/SU DAP algorithm is evaluated
using real watercraft emitted noise and manatee vocaliza-
tions in which the input SNR is varied from −10 to 5 dB.
The performance of the algorithm is evaluated in terms of
the SNR and SDR performance measures. These experiments
suggest that the proposed method extends the detection range
on average five times compared to high-pass filtering alone.
In contrast to conventional beamforming, the presented
source separation approach does not require an array of
many hydrophones and is not sensitive to uncertainties in the
sensor locations. One limitation of the proposed FF/SU DAP
algorithm is that the signal enhancement performance de-
clines as the inter-channel coherence between the two chan-
nels is reduced �e.g., due to increases in diffuse ambient
noise levels�. For low coherence measurements, the imple-
mentation structure of the FF/SU DAP algorithm allows it to

be reconfigured as the conventional supervised adaptive

J. Acoust. Soc. Am., Vol. 126, No. 6, December 2009 M. B. Gur
noise canceller which is a robust algorithm for enhancing
signals in the presence of multiple uncorrelated noise mea-
surements.

Although the proposed FF/SU DAP algorithm was
implemented and evaluated using manatee vocalizations, the
approach makes very generic assumptions about properties
of the vocalization signals and the shallow underwater
acoustic channel. Hence, the proposed method is suitable for
extending to other marine mammal monitoring applications
such as the detection and the classification of whale calls in
deep oceans with minimal modifications to the algorithm pa-
rameters.
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