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In this paper, a subtractive beamforming algorithm for short linear arrays of two-dimensional parti-

cle velocity sensors is described. The proposed method extracts the highly directional acoustic

modes from the spatial gradients of the particle velocity field measured at closely spaced sensors

along the array. The number of sensors in the array limits the highest order of modes that can be

extracted. Theoretical analysis and numerical simulations indicate that the acoustic mode beam-

former achieves directivity comparable to the maximum directivity that can be obtained with differ-

ential microphone arrays of equivalent aperture. When compared to conventional delay-and-sum

beamformers for pressure sensor arrays, the proposed method achieves comparable directivity with

70%–85% shorter apertures. Moreover, the proposed method has additional capabilities such as

high front–back (port–starboard) discrimination, frequency and steer direction independent

response, and robustness to correlated ambient noise. Small inter-sensor spacing that results in very

compact apertures makes the proposed beamformer suitable for space constrained applications such

as hearing aids and short towed arrays for autonomous underwater platforms.
VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4876180]
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I. INTRODUCTION

The acoustic field is described with two separate varia-

bles: the scalar pressure and the vectorial particle velocity

variables. The pressure variable is significantly simpler to

measure. Therefore, a majority of the existing acoustic appli-

cations rely on omni-directional pressure sensors. However,

being a scalar variable, pressure measurements at a point in

space do not provide directional information regarding the

acoustic field. Therefore, linear arrays of omni-directional

pressure sensors are used for signal enhancement, interfer-

ence suppression, and direction-of-arrival (DOA) estimation

(Van Veen and Buckley, 1988; Krim and Viberg, 1996). The

directivity of the array improves as the aperture length is

increased. To avoid grating lobes and provide robustness

against ambient noise, the separation between the pressure

sensors in the array is generally set at one-half of the acoustic

wavelength. In its simplest form, data independent delay-and-

sum beamforming is implemented by time delaying each sen-

sor measurement according to the desired steer direction. As

a result, incoming waves are summed constructively to form

the array output. Other more advanced data dependent, adapt-

ive, and optimum beamformers also rely on the additive proc-

essing of sensor measurements (Van Veen and Buckley,

1988). In contrast, subtractive beamformers differentially

process time delayed pressure measurements obtained from

arrays with inter-sensor spacing much less than the wave-

length. Subtractive beamformers offer several advantages

over the conventional additive beamformers such as super-

directivity (i.e., higher directivity for a given aperture length),

better noise, and cross-talk rejection (Elko, 2004).

The particle velocity has historically been neglected, de-

spite providing directional information regarding the acous-

tic field. This can be attributed to the lack of affordable

sensors capable of reliable measurements. However, the

demand for higher performance array systems, coupled with

the recent advancements in single crystal ceramic and micro-

electromechanical systems sensor fabrication technology,

has resulted in the development of particle velocity sensors

(Shipps and Deng, 2003; Jacobsen and de Bree, 2009). In

general, particle velocity sensors are combined with pressure

sensors in a single package to form an acoustic vector sensor

(AVS). Although there is substantial literature on additive

beamformers for velocity sensor arrays, subtractive beam-

formers for such arrays are neglected. In this paper, a

subtractive beamformer suitable for short and linear two-

dimensional (2-D) velocity sensor arrays is presented.

Subtractive beamformers designed for audio (Teutsch,

2007), telecommunication (Elko, 1996), and biomedical

(Kates, 1993; Thompson, 2003; Chung et al., 2006) applica-

tions are generally referred to as differential microphone

arrays. The inter-sensor separations and time delays in dif-

ferential arrays are small relative to the wavenumber and the

sampling rate, respectively. An Nth order differential array

can be obtained from closely spaced M ¼ N þ 1 omni-

directional pressure sensors. The maximum directivity that

can be achieved with differential arrays with M sensors is

2M�1 for 2-D and M2 for three-dimensional (3-D) isotropic

noise (Elko, 2004). These results are in agreement with the

theoretical upper directivity limit of M2 for an array of M
omni-directional sensors. It should also be noted that this

value for the maximum directivity is achieved for linear
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arrays steered to the endfire direction (Weston, 1986;

Parsons, 1987). Several optimum differential array design

methods based on maximizing various performance metrics

exist. Commonly used performance metrics are directivity,

front–back (port–starboard) ratio, and main beam width. A

concise review of the optimal differential microphone array

designs based on these performance metrics are provided by

Elko (2004). More recently, De Sena et al. (2012) developed

a differential array design methodology based on the weighted

optimization of the frontal and back sector directivity ratios

and the smoothness of the directivity function in the frontal

sector. Most practical realizations of differential arrays found

in the literature are limited to an order of three or less (e.g.,

see Elko, 2004 and De Sena et al., 2012). This is due to

adverse effects of electronic noise and microphone mismatch

at higher orders. Abhayapala and Gupta (2010) proposed an

alternative differential array design scheme which alleviates

the effects of electronic noise and enables practical array real-

izations above third order. Although the nulls can be steered

(Elko, 2004), the main response axis differential microphone

arrays is confined to the array axis and cannot be steered

(Teutsch, 2007). This inability to steer the main response axis

is one of the major limitations of differential arrays.

An alternative perspective on differential arrays considers

them as higher order acoustic sensors capable of measuring the

spatial gradients of the pressure field. Spatial gradients naturally

arise from the Taylor series expansion of the pressure field at a

point (Cray et al., 2003; Schmidlin, 2007). These conceptual

higher order acoustic sensors have the same response function

and directivity as differential arrays. The equivalence of differ-

ential arrays and gradient based higher order acoustic sensors is

briefly mentioned by Olson (1946) and firmly established by

Kolundzija et al. (2011). Cox and Lai developed design meth-

ods based on simultaneous optimization of array and white

noise gains for linear arrays of higher order sensors (Cox and

Lai, 2007). The authors extended their design methodology to

simultaneous grating and back lobe rejection (Cox and Lai,

2009). Kasilingam et al. (2009) proposed a linear prediction

based estimation of the higher order spatial gradients from

lower order gradient measurements of the acoustic field. A

closed form DOA estimation method for a general 3-D nth

order acoustic sensor is described by Song and Wong (2012).

Lai and Bell (2007) derived Cramer–Rao bounds on the DOA

estimates obtained from arrays of higher order acoustic sensors.

As a practical realization of higher order acoustic sen-

sors, a subtractive planar beamformer for underwater linear

arrays based on the gradients of the pressure field is pro-

posed by Franklin (1997). The author derives optimal

weights that maximize the directivity of the subtractive array

for various underwater noise fields. The resulting super-

directive linear array achieves directionality comparable to

conventional additive pressure sensing arrays with much

shorter aperture. More specifically, the necessary aperture

length of an equivalent conventional array is computed to be

between 14 (at 200 Hz) to 1.4 times (at 9 kHz) longer than

the super-directive array. However, as with differential

microphone arrays, the main response axis of the proposed

super-directive array is in the endfire direction and cannot be

steered, limiting the applicability of the method.

Motivated by the advent of high performance AVS in

the last decade, in particular, for underwater acoustic appli-

cations, there has been a surge in the research on linear AVS

arrays. Cray and Nuttall (2001) describe several beamform-

ing approaches for linear AVS arrays, where the inter-sensor

spacing is set to half the wavelength. In particular, the

authors propose a method where each AVS in the array is

individually beamformed to produce a standard steerable

cardioid response. These individual AVS responses are then

combined using the delay-and-sum method to obtain the

array response. A major conclusion is that linear AVS

arrays, albeit equipped with more measurement channels,

provide a directivity improvement of up to 5 dB compared to

conventional arrays of equal aperture lengths. More recently,

Smith and Van Leijen (2007) proposed a beamformer by

extending on the cardioid pattern of a single AVS in the

array. In the method proposed by the authors, the cardioid

response of a single AVS is raised to integer powers, result-

ing in a more directional single sensor response. Again, the

individual sensor responses from the half-wavelength spaced

AVS are combined using the delay-and-sum method. In a se-

ries of papers by Nehorai on DOA estimation using AVS

arrays, inter-sensor separations of half-wavelength or more

are assumed (Nehorai and Paldi, 1994; Hawkes and Nehorai,

1998). Chen and Zhao (2004) present an extension of the

minimum variance distortionless response beamformer to

AVS arrays with inter-sensor separation of one-half of the

wavelength or more. An acoustic mode processor for a single

AVS is described in Clark (2008). However, a priori knowl-

edge of the DOA of the acoustic wave is required for the

processor, limiting the practical applicability of the method.

Existing scientific literature on AVS arrays is overwhelm-

ingly based on the traditional design of half-wavelength

spacing employed for pressure arrays. However, this design

is not necessarily justified in terms of noise suppression for

AVS arrays (D’Spain et al., 2006).

This paper presents a subtractive beamformer for short

linear velocity sensor arrays. The proposed method over-

comes the limitation of the main response axis being re-

stricted to the endfire direction present in existing subtractive

and differential arrays. Furthermore, the beamformer relies

on arrays with inter-sensor separation much smaller than one-

half of the wavelength, enabling more compact arrays. The

paper is organized as follows. A theoretical treatment of the

proposed method, including the approximation of the velocity

gradients using finite differences, the extraction of the acous-

tic modes, and their processing to obtain directional beam

responses are presented in Sec. II. The performance and di-

rectivity analysis of the proposed beamformer are provided in

Sec. III. The effects of sensor spacing and ambient noise on

array performance, as well as alternative array configurations

are discussed. The paper is concluded in Sec. IV with a sum-

mary and discussion of future work.

II. THEORETICAL DEVELOPMENT

A. The acoustic field

Consider a short uniform linear array of particle velocity

sensors placed along the x-axis of a Cartesian coordinate
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system (as shown in Fig. 1). Each sensor in the array is capa-

ble of making particle velocity measurements in the x–y
plane of the array. The array also incorporates a single pres-

sure sensor located at the array center. A planar time-

harmonic wave with an angular frequency of x ¼ kc (k is

the wavenumber and c is the speed of sound) is incident to

the array at an azimuth angle of w. The azimuth angle is

measured from the x-axis with the positive sense in the coun-

terclockwise direction toward the y-axis. For this 2-D setup,

the elevation angle, h (measured in the positive sense from

the y-axis toward the z-axis), is zero for the incoming wave.

The vertical separation between the source and array is small

compared to the horizontal separation in room teleconferenc-

ing and shallow water marine applications. These are typical

cases that involve plane waves traveling in a 2-D acoustic

field. The pressure and particle velocity at any point, x, along

the array axis [omitting the time dependent part exp(jxt)]
can be expressed as (Cray and Nuttall, 2001; Ziomek, 1995)

pðxÞ ¼ P expðjk cos wxÞ;
vxðxÞ ¼ V cos w expðjk cos wxÞ;
vyðxÞ ¼ V sin w expðjk cos wxÞ; (1)

where P and V are the amplitudes of the pressure and veloc-

ity field variables, and w is the azimuth angle as defined

previously. The spatial gradients of the particle velocities in

Eq. (1) are

@nvx

@xn
¼ VðjkÞn cos wðcos wÞn expðjk cos wxÞ;

@nvy

@xn
¼ VðjkÞn sin wðcos wÞn expðjk cos wxÞ: (2)

Evaluating the nth order gradients given in Eq. (2) at the cen-

ter of the array (i.e., at x¼ 0) results in

@n

@xn
vxð0Þ ¼ VðjkÞnðcos wÞnþ1;

@n

@xn
vyð0Þ ¼ VðjkÞn sin wðcos wÞn: (3)

The x-direction spatial gradients of the particle velocity field

evaluated at the origin are required in the derivation of the

proposed beamformer (as explained in Sec. II C). However,

there are no acoustic sensors that can directly measure the

spatial gradients of the particle velocity. Instead, the spatial

gradients at the origin are approximated from measurements

made by the array of particle velocity sensors using finite

differences. The utility of the single pressure sensor at the

array center is explained in Sec. II D.

B. Approximating the particle velocity gradients with
finite differences

The first derivative of any spatial function, vðnÞ, can be

approximated in terms of the first order central difference

{i.e., @vðnÞ=@x � ½vðnþ d=2Þ � vðn� d=2Þ�=d, for very

small d}. Likewise, it is possible to approximate the second

derivative by taking the central finite difference of two first

order central finite differences {i.e., @2vðnÞ=@x2 � ½vðnþ dÞ
� 2vðnÞ þ vðnþ dÞ�=d2}. Extending on this approach, any

higher order gradient, @nvðnÞ=@nn, can be obtained from the

finite difference operator

gn½vðnÞ� ¼
dn½vðnÞ�

dn
; (4)

where the dnð�Þ operator is defined as

dn½vðnÞ� ¼
Xn

l¼0

ð�1Þn�1 n
l

� �
v½nþ ðl� n=2Þd�: (5)

The coefficients of the dnð�Þ operator are the binomial

coefficients

n
l

� �
¼ n!

l!ðn� lÞ! : (6)

In the context of this paper, vðnÞ is the particle velocity eval-

uated at some point x ¼ n along the x-axis, n is the order of

the gradient, and d is the separation between the sensors.

Thus, for small sensor spacing relative to the wavelength

(i.e., kd=2 ¼ pd=k� 1), the nth order gradient of the

particle velocity evaluated at the origin can be approximated

with the nth order finite difference operation gnð�Þ {e.g.,

@nvxð0Þ=@xn � gn vxð0Þ½ �}. Table I outlines the parameters of

the finite difference operator, gnð�Þ, used for approximating

the first five gradients of the acoustic field variables.

C. Extracting acoustic modes from the field variable
gradients

The velocity gradients defined in Eq. (2) can be approxi-

mated from measurements made at sensors using the finite

difference operator, gnð�Þ. These gradients for the x- and

y-direction particle velocities involve the trigonometric

terms ðcos wÞnþ1 and sin wðcos wÞn, respectively. The nth

spatial gradient of the x-direction particle velocity evaluated

at the origin, x ¼ 0 [given in Eq. (3)], can be expanded as

(see the Appendix for the derivation)FIG. 1. The Cartesian coordinate system and the AVS array.
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@n

@xn
vxð0Þ ¼ VðjkÞn �

2

2nþ1

Xn=2

l¼0

nþ 1

l

 !
cos½ðn� 2lþ 1Þw�

2
4

3
5; n even

2

2nþ1

Xðn�1Þ=2

l¼0

nþ 1

l

 !
cos½ðn� 2lþ 1Þw� þ 1

2nþ1

nþ 1

ðnþ 1Þ=2

 !2
4

3
5; n odd;

8>>>>>>>><
>>>>>>>>:

(7)

where the cos½ðn� 2lþ 1Þw� terms are the cosine modes of

the acoustic field. Note that if n is even, the summation will

include only the odd ordered cosine modes less than or equal

to nþ 1 [e.g., if n ¼ 4, cosine modes included in the summa-

tion will be cos w, cos ð3wÞ, and cosð5wÞ]. If n is odd, the

summation will include only the even ordered cosine modes

less than or equal to nþ 1 and a constant term [e.g., if

n ¼ 5, cosine modes included in the summation will be

cos ð2wÞ, cos ð4wÞ, cos ð6wÞ, and a constant term].

Likewise, the nth spatial gradient of the y-direction par-

ticle velocity evaluated at the origin, x ¼ 0, can be expanded

as (see the Appendix for the derivation)

@n

@xn
vyð0Þ ¼ VðjkÞn �

1

2n

Xn=2

l¼0

n!ðn� 2lþ 1Þ
l!ðn� lþ 1Þ!

� �
sin½ðn� 2lþ 1Þw�

2
4

3
5; n even

1

2n

Xðn�1Þ=2

l¼0

n!ðn� 2lþ 1Þ
l!ðn� lþ 1Þ!

� �
sin½ðn� 2lþ 1Þw�

2
4

3
5; n odd;

8>>>>>>><
>>>>>>>:

(8)

where the sin½ðn� 2lþ 1Þw� terms are the sine modes of the

acoustic field. If n is even, the summation in Eq. (8) will

include only the odd ordered sine modes less than or equal

to nþ 1 [e.g., if n ¼ 4, sine modes included in the summa-

tion will be sin w, sin ð3wÞ, and sin ð5wÞ].
If n is odd, the summation will include only the even or-

dered sine modes less than or equal to nþ 1 [e.g., if n ¼ 5,

sine modes included in the summation will be sin ð2wÞ,
sin ð4wÞ, and sin ð6wÞ].

D. The velocity gradient acoustic mode beamforming
algorithm

As can be seen from Table I, the sensor locations neces-

sary to approximate the even and odd ordered gradients do

not coincide. This suggests that to be able to approximate up

to the Nth order gradient, one needs M ¼ 2N þ 1 sensors

separated by a distance of d=2. However, by shifting the ref-

erence center for the even numbered modes by a distance of

d=2 in the positive x-direction, it is possible to use the same

sensors for estimating both the even and odd numbered gra-

dients (Franklin, 1997). Assuming that the incident wave is a

plane wave, the shift in the reference center can be corrected

by time delaying the even order gradients by d cos ws=2c,

where ws is the desired azimuth steer angle. As a conse-

quence, it is possible to estimate up to the Nth order gradient

using M ¼ N þ 1 sensors separated by a distance of d (see

Fig. 2).

Once the gradients at x ¼ 0 are computed from finite

differences (as outlined in Sec. II B), each gradient is

weighted by a normalization factor, an ¼ ðjkÞ�n
. This nor-

malization is performed to compensate for the (jk)n terms

appearing in Eq. (3). Following normalization, the gradients

are filtered to steer the beamformer in the desired direction.

The x- and y-direction velocity gradients are processed using

separate filters with coefficients wx;n and wy;n, respectively.

Following the filtering, the gradients are summed resulting

in the beamformer output of the form

TABLE I. The parameters of the finite difference operator, gnð�Þ, used for approximating the first few gradients of the acoustic field variables.

Gradient order (n) Required measurement locations ðn ¼ 0Þ ðl� n=2Þ Corresponding binomial coefficients ð�1Þðn�lÞ½n!=ðl!ðn� lÞ!Þ�

0 0 1

1 þd/2, �d/2 þ1, �1

2 þd, 0, �d þ1, �2, þ1

3 þ3d/2, þd/2, �d/2, �3d/2 þ1, �3, þ3, �1

4 þ2d, þd, 0, �d, �2d þ1, �4, þ6, �4, þ1

5 þ5d/2, þ3d/2, þd/2, �d/2, �3d/2, �5d/2 �1, þ5, �10, þ10, �5, þ1
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XN

n¼0

wx;nVðcos wÞnþ1 þ
XN

n¼0

wy;nV sin wðcos wÞn: (9)

The choice of the filter weights affects the beamformer

response and array directivity. The filter weights can be cho-

sen to maximize a performance metric such as directivity,

front–back (port–starboard) ratio, main beam width, grating

and back lobe suppression, and white noise gain (Franklin,

1997; Elko, 2004; Cox and Lai, 2007; Cox and Lai, 2009).

An alternative is to choose the filter weights such that the

beamformer output corresponds to a certain desired response

function. The latter approach is pursued in this paper with a

desired beamformer response in the form of

rðwsÞ /
X

n

cos½nðw� wsÞ�; (10)

which attains a maximum value at ws ¼ w and has some prop-

erties such as good side-lobe suppression and high front–back

ratio. Since the contribution of each x-direction gradient order

to the cosine modes are readily available from Eq. (7), it is

possible to construct the ðN þ 1Þ � ðN þ 1Þmatrix

Ax ¼

axð1;0Þ axð1;1Þ � � � axð1;NÞ
axð2;0Þ axð2;1Þ � � � axð2;NÞ

� � . .
.

�

axðNþ 1;0Þ axðNþ 1;1Þ � � � axðNþ 1;NÞ

2
6664

3
7775;

(11)

whose elements axðl; nÞ represent the contribution of the nth

order x-direction gradient (i.e., @nvx=@xn) to the cos ðlwÞ
term. Likewise, using Eq. (8), it is possible to construct a

similar ðN þ 1Þ � ðN þ 1Þ matrix Ay with elements ayðl; nÞ
representing the contribution of the nth order y-direction gra-

dient (i.e., @nvy=@xn) to the sin ðlwÞ term. Defining the two

ðN þ 1Þ � 1 steering vectors, bx and by, such that

bx ¼

cos ws

cosð2wsÞ
�

cos½ðN þ 1Þws�

2
664

3
775; by ¼

sin ws

sinð2wsÞ
�

sin½ðN þ 1Þws�

2
664

3
775;

(12)

it is possible to obtain an exact solution for the x- and y-

direction filter weights, wx;n and wy;n, n ¼ 1; 2;…;N, corre-

sponding to the non-zero gradient orders by solving the

determined set of equations

Ax 0N�N

0N�N Ay

� �
wx

wy

� �
¼ bx

by

� �
; (13)

where wx ¼ ½wx;0 wx;2 � � � wx;N �T and wy

¼ ½wy;0 wy;2 � � � wy;N �T are the ðN þ 1Þ � 1 filter

weight vectors and 0N�N is the square zero matrix of size N.

The resulting beamformer output takes the form

V �
XNþ1

n¼1

½cosðnwÞcosðnwsÞ þ sinðnwÞsinðnwsÞ�

þ V �
XðNþ1Þ=2

n¼1

1

22n�1

2n� 1

n

 !
wx;2n�1: (14)

The second term in Eq. (14) is due to constant terms arising

in the odd gradients of the x-direction particle velocity [see

Eq. (7)]. This constant term must be made equal to unity for

the array response to reduce to the desired form given in Eq.

(10). If left as is, the constant term results in a distortion in

the beampattern. A correction for the distortion can be

derived by first noting that the constant term in Eq. (14)

can be expressed as Vaxwx. The elements axð0; nÞ of the 1�
ðN þ 1Þ vector, ax, are defined similar to the elements of the

Ax matrix. The vectors ax and wx can be computed from

Eqs. (7) and (13), respectively. However, the particle veloc-

ity amplitude (V) is not readily available from the velocity

measurements. To overcome this problem, a single pressure

measurement made at the array center can be utilized. For

plane waves, the pressure and particle velocity amplitudes

are related through pð0Þ=qc ¼ P=qc ¼ V (where q is the

density of the medium). Thus, the correction can be accom-

plished by subtracting the term

Q ¼ pð0Þ
qc
ðaxwx � 1Þ; (15)

from the array response. For this purpose, a dedicated pres-

sure sensor can be incorporated into the array at the origin

(as shown in Fig. 1). Alternatively, one of the central 2-D ve-

locity sensors can be replaced with a 2-D AVS capable of

making collocated measurements of the pressure and particle

velocity fields. Time-shifted (to the array center) pressure

measurements from this AVS can then be used for the cor-

rection. After the correction, the beamformer output takes

the form

y ¼ V
XNþ1

n¼0

cos½nðw� wsÞ�; (16)

which is in the form of the response given in Eq. (10).

Without the loss of generality, the particle velocity ampli-

tude is taken as unity (i.e., V ¼ 1). It is desirable to normal-

ize the array response such that it has a value of unity in the

FIG. 2. Practical realization of a six sensor vector sensor array (pressure

sensor omitted for clarity) depicting the sensor weights for approximating

the first six gradients.
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steer direction. Noticing that M ¼ N þ 1, the resulting nor-

malized beamformer response becomes

rðwsÞ ¼
1

M þ 1

XM

n¼0

cos½nðw� wsÞ�: (17)

Theoretical beampatterns for the array can be obtained

as the magnitude squared of the array response, Bðw; hÞ
¼ jrðw; hÞj2. Such beampatterns for arrays comprised of five

or less vector sensors (steered to broadside) are shown in

Fig. 3. As can be predicted from Eq. (17), the response

reduces to the standard cardioid response for a single sensor

(i.e., 2-D AVS). Arrays with odd number of sensors provide

perfect port–starboard discrimination (front–back ratio).

Even number of sensors results in lower discrimination

(�10 dB for M ¼ 2 and decreasing with increasing number

of sensors). Theoretical beampatterns for a six sensor array

steered in the azimuthal direction are shown in Fig. 4.

Simulated beampatterns for a six AVS short underwater

array (sensor spacing 0.1 m, acoustic aperture length 0.5 m),

obtained by processing 0.5 kHz time-harmonic signals cor-

rupted with 3-D isotropic ocean noise (with signal-to-noise

ratio of 10 dB), are also presented on the same figure.

III. PERFORMANCE ANALYSIS

A. Finite difference errors

The finite difference error made in approximating the

spatial gradients with finite differences (defined as the ratio

of the finite difference approximation and the true theoretical

gradient) for order n is given as

enðwÞ ¼
sin½ðkd=2Þ cos w�
ðkd=2Þ cos w

� �n

: (18)

This error is plotted for a plane wave incident with w ¼ 0 as

of a function of the sensor spacing for different gradient

orders in Fig. 5. For a given sensor spacing, d, increasing fre-

quency (i.e., reducing the wavelength, k, or increasing k)

results in an increase in the finite difference error. Hence, the

proposed beamformer is more suited for processing low

FIG. 3. A logarithmic polar plot showing the beampatterns obtained using

the proposed method for a single vector sensor (solid), and arrays consisting

of two (dashed), three (dotted), four (dashed-dotted), and five (connected

plus) AVS.

FIG. 4. The theoretical (solid) and

simulated (with signal-to-noise ratio of

10 dB; dashed-dotted) beampatterns of

a short array of six 2-D vector sensors

steered toward (a) 90 (broadside), (b)

135, (c) 180 (endfire), and (d) 210

degrees.
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frequency signals. For a given sensor spacing and frequency,

the finite difference approximation error also increases with

increasing order, n. This is due to accumulation of finite dif-

ferencing errors with increasing gradient orders. In designing

high order arrays and establishing the upper operating fre-

quency limits, the accumulative nature of the finite differ-

ence errors must be taken into account.

B. Directivity calculations

The directivity function for a receiver array can be

defined in terms of the array response as

DðwÞ ¼ rðwÞ
rðwmaxÞ

; (19)

where wmax is the azimuth direction of the maximum

response. Assuming that the wave is incident at an azimuth

of w ¼ 0 and redefining the steer azimuth angle as ws¢w,

the array response given in Eq. (17) becomes

rðwÞ ¼ 1

M þ 1

XM

n¼0

cosðnwÞ: (20)

Substituting Eq. (20) into Eq. (19), the directivity function is

computed as

DðwÞ ¼ 1

M þ 1

XM

n¼0

cosðnwÞ: (21)

Using Lagrange’s trigonometric identity, Eq. (21) simplifies

to

DðwÞ ¼ 1

2ðM þ 1Þ þ
sin½ðM þ 1=2Þw�

2ðM þ 1Þsinðw=2Þ : (22)

The directivity function given in Eq. (22) results in a half-

power beamwidth of w�3 dB ¼ 155�=M. This result is in

agreement with the beamwidth reported by Clark (2008).

Array gain (AG) is defined as the improvement in sig-

nal-to-noise ratio resulting from the beamformer relative to a

single omni-directional pressure sensor and is computed

using the relation

AG ¼

ð2p

0

dw
ðp=2

�p=2

Fðw; hÞcos hdh

ð2p

0

dw
ðp=2

�p=2

Bðw; hÞFðw; hÞcos hdh

; (23)

where Fðw; hÞ is the intensity directivity of the noise field.

Assuming a 2-D isotropic noise field characterized by

Fðw; hÞ ¼ dðhÞ, the AG becomes

AG2D ¼
2pðM þ 1Þ2ð2p

0

XM

n¼0

cosðnwÞ
" #2

dw

¼ 2ðM þ 1Þ2

M þ 2
: (24)

The directivity factor (DF) is defined as the AG in 3-D iso-

tropic noise characterized by the directivity of Fðw; hÞ ¼ 1.

The directivity index is calculated as 10 log10(DF) and eval-

uated numerically for the proposed beamformer. The results

are presented graphically in Fig. 6 as a function of the num-

ber of sensors, M. In Fig. 6, it is assumed that the array con-

figuration satisfies kd � 1. For high frequencies, the

non-dimensional variable, kd, approaches and eventually

exceeds unity. In that case, the error associated with approxi-

mating the particle velocity gradients with finite differences

becomes significant. As a consequence, the performance of

the beamformer decreases. The AG is numerically evaluated

and plotted in Fig. 7 as a function of frequency for under-

water arrays with different number of sensors (and with a

0.1 m sensor spacing). From Fig. 7, it is observed that the di-

rectivity of the array does not vary significantly with fre-

quency at low frequencies where kd	 1. Thus, the proposed

beamformer is frequency independent, provided that the sen-

sor spacing criteria for accurate gradient estimation is satis-

fied. Frequency independent response is also evident from

the theoretical array response function derived in Eq. (17).

FIG. 5. The finite difference approximation error for each gradient order (n)

as a function of the relative sensor spacing (d/k).

FIG. 6. AG as a function of the number of sensors for 2-D and 3-D isotropic

noise. The lines without markers are for the proposed method, lines marked

with open circles represents the theoretical upper directivity limit of differ-

ential microphone arrays.
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C. Effects of spatially correlated noise

Conventional pressure based additive beamformers

achieve optimum AG if noise measured at the sensors are

uncorrelated. The spatial cross-spectrum of pressure in a 3-D

isotropic noise field is given by Sppðd;xÞ ¼ j0ðkdÞ � SpðxÞ
where j0ðxÞ ¼ sin x=x is the spherical Bessel function of zer-

oth order and SpðxÞ is the noise pressure autospectrum. The

oscillatory function, j0ðkdÞ, has a decreasing envelope and is

equal to zero at integer multiples of half the wavelength.

Thus, to optimize the AG, inter-element spacing in uniform

linear arrays of pressure sensors is generally set to half the

design wavelength (D’Spain et al., 2006). The proposed sub-

tractive beamformer attains optimum directivity in the pres-

ence of correlated ambient noise. For the orientation shown

in Fig. 1, D’Spain et al. (2006) shows that the particle veloc-

ity spatial cross-spectra in a 3-D isotropic noise field are

Sxxðd;xÞ
Syyðd;xÞ
Szzðd;xÞ

2
64

3
75 ¼

j1ðkdÞ=kd � j2ðkdÞ
j1ðkdÞ=kd

j1ðkdÞ=kd

2
64

3
75 SpðxÞ
ðqcÞ2

; (25)

where j1ðxÞ ¼ sin x=x2 � cos x=x and j2ðxÞ ¼ ð3=x2 � 1Þ
�ðsin x=xÞ � 3 cos x=x2 are spherical Bessel functions of the

first and second orders, respectively. Spatial cross-spectra

between orthogonal particle velocity components, and

between pressure and particle velocity components are zero

except for Spxðd;xÞ, which is proportional to j1ðkdÞ. The

functions, j1ðkdÞ and j2ðkdÞ, are also oscillatory with

decreasing envelopes. This decreasing envelope causes the

performance of the proposed beamformer to decrease with

increasing inter-element spacing and increasing frequency.

Hence, small inter-element spacing is not only required for

accurate particle velocity spatial gradient estimation (as

explained in Sec. II B), but is also important for achieving

high AG and good ambient noise rejection. In addition, sam-

pling rates higher than necessary will introduce high fre-

quency noise with low spatial correlation into the

beamformer, again reducing directivity and performance.

Uncorrelated signals result from channel mismatch, errors in

microphone spacing, local flows, and electronic circuitry.

Such signals are known to adversely affect the performance

of the proposed method (e.g., see Franklin, 1997). A detailed

analysis of the effects of such uncorrelated noise on beam-

former performance is not included in this paper and will be

addressed in future work.

D. Comparison with existing methods

As the proposed beamformer represents a viable alterna-

tive to gradient and differential microphone arrays, it is

worth comparing their directivities. It is noted in Sec. I that

the maximum achievable directivity of differential micro-

phone arrays with M sensors is 2M�1 for 2-D, and M2 for

3-D isotropic noise. For comparison, these directivity values

of differential arrays are plotted in Fig. 6. It is evident that

the directivity of the proposed method is comparable to that

of differential arrays. It should be emphasized that the theo-

retical upper directivity limit, M2, is valid for arrays of

omni-directional sensors. It is not applicable to the proposed

method that is based on directional velocity sensors.

The proposed beamformer is a derivative of gradient and

differential microphone arrays. In essence, both methods are

based on the estimation of the gradients of the acoustic field

variables from closely spaced sensors. Since the proposed

method represents a viable alternative to omni-directional

pressure sensor based differential arrays, it is worth comparing

the directivity of the two methods. One of the most significant

attributes of the proposed method is the reduction in the array

aperture due to smaller sensor spacing. This reduction in the

aperture can be quantified by comparison to the required aper-

ture for an equivalent conventional array. Equivalence

between the arrays is defined in terms of the DF. The results

are depicted in Fig. 8 where the apertures are given in terms of

the wavelength. The sensor spacing for the conventional and

proposed arrays are k=2 and k=10, respectively. The proposed

method attains a performance equivalent to a conventional

array with 70%–85% shorter apertures. However, the differ-

ence in aperture lengths decreases as the number of sensors in

the array increases. Finally, it should be noted that although

the proposed method achieves equivalent performance with a

FIG. 7. AG as a function of frequency for arrays of different number of sen-

sors (M) for 3-D isotropic underwater noise.

FIG. 8. A comparison between the required apertures for a conventional

pressure array and an equivalent gradient vector sensor array (proposed

method). Aperture lengths are given in terms of the wavelength (k).
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shorter aperture, just as with most AVS arrays, the resulting

array will have higher data processing loads due to higher

number of sensor channels.

E. Alternative configurations

The proposed beamformer relies on a linear array of

closely spaced 2-D particle velocity sensors and a single

pressure sensor. The velocity measurements in the direction

of the array axis (x-axis) provide the cosine modes. The ve-

locity measurements in the y-direction provide the sine

modes. Extracting both cosine and sine modes enables the

array response to be steered to any desired azimuthal direc-

tion. This ability to steer in the azimuth without distorting

the array response is what separates the proposed method

from existing literature on differential microphone arrays

and subtractive endfire arrays. It is noted in Sec. II that a sin-

gle pressure measurement, made at array center, is necessary

to obtain the desired array response.

Alternatively, the beamformer can also be implemented

for a linear array of one-dimensional (1-D) AVS. The AVS

utilized in this configuration are capable of making collo-

cated measurements of the pressure and the y-direction parti-

cle velocity. For the justification of this alternative

configuration, first note from Eq. (1) that the x-direction spa-

tial gradients of the pressure field are

@np

@xn
¼ PðjkÞnðcos wÞn expðjk cos wxÞ: (26)

Evaluated at the origin, the pressure gradients become

@n

@xn
pð0Þ ¼ PðjkÞnðcos wÞn: (27)

Note also that the pressure gradients given in Eq. (27) and

the x-direction velocity gradients [given in the first line of

Eq. (3)] are similar in the sense that both can be utilized to

obtain the cosine modes of the acoustic field. The main dif-

ference between the nth order pressure and nth order x-direc-

tion particle velocity gradients is that the order of the former

is one less than that of the latter. Thus, it is possible to apply

the same beamforming procedure on a linear array of 1-D

AVS. With an array of M 2-D velocity sensors, it is

possible to extract N ¼ M � 1 cosine modes. In contrast,

only N ¼ M � 2 cosine modes can be extracted from an

array of M 1-D AVS. Since directivity increases with the

number of modes extracted, a 1-D AVS array will have

lower directivity compared to an array of equal numbered

2-D velocity sensors.

IV. CONCLUSIONS

A subtractive beamformer for short vector sensor arrays

is presented in this paper. The presented method is based on

the extraction of the directional modes of the acoustic field

from finite difference based approximations of the particle

velocity gradients. The resulting beamformer has some very

desirable attributes such as super-directivity, ability to steer

the main response axis, steering and frequency independent

response, and front–back (port–starboard) discrimination.

The processing is similar to existing differential or gra-

dient pressure sensor arrays, with the exception being that

the gradients of particle velocity (and not pressure) are

employed. 2-D particle velocity measurements in the plane

of the array result in two sets of orthogonal modes, enabling

array steering without distortion in the beampattern or loss

in directivity. Thus, the limitation of not being able to steer

the main response axis away from the endfire direction pres-

ent in differential arrays is overcome. The directivity of the

proposed method is comparable to the maximum directivity

that can be achieved with differential microphone arrays

with similar aperture length.

Unlike conventional delay-and-sum pressure sensor and

AVS arrays, very small inter-sensor spacing is required for

the proposed method. As a consequence, a significant reduc-

tion in the array aperture is possible. Theoretical calculations

and numerical simulations reveal that 70%–85% shorter

apertures (relative to conventional arrays) with equal number

of sensors are sufficient to achieve comparable directivity.

Owing to this shorter aperture and other potential operational

advantages, the proposed method is suitable for use in space

constrained applications such as hearing aids and short

towed arrays with autonomous underwater platforms.

The development presented in this paper is based on the

assumption of a 2-D acoustic field. Although the extension

to 3-D is not straightforward, it appears to be possible and is

currently under investigation. The directivity of the proposed

beamformer is expected to decrease in the presence of uncor-

related noise (in particular, at low frequencies). Thus, the

effects of uncorrelated noise on beamformer performance

and the white noise gain of the array should be analyzed.

One of the primary applications of arrays is DOA estimation.

Measurements from the vector sensors of the array are read-

ily available and can be used to implement existing DOA

methods. However, novel and improved DOA estimation

techniques that exploit the gradients of the acoustic field are

worth investigating. Finally, the practical realization of the

proposed method is investigated through ongoing experi-

ments conducted using an array of six in-air 2-D particle ve-

locity sensors with an aperture of 25 cm.
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APPENDIX: CLOSED FORM EXPANSIONS OF THE
VELOCITY GRADIENTS [DERIVATION OF EQS. (7)
AND (8)]

Using Euler’s formula, cos w can be expressed as

cos w ¼ expðjwÞ þ expð�jwÞ
2

; (A1)
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and ðcos wÞnþ1 as

ðcos wÞnþ1 ¼ 1

2nþ1
½expðjwÞ þ expð�jwÞ�nþ1: (A2)

Using the binomial theorem (Abramowitz and Stegun, 1972), Eq. (A2) can be expressed as

ðcoswÞnþ1¼ 1

2nþ1

Xnþ1

l¼0

nþ1

l

� �
½expðjwÞ�nþ1�l½expð�jwÞ�l¼ 1

2nþ1

Xnþ1

l¼0

nþ1

l

� �
exp½jðn�2lþ1Þw�: (A3)

Note that if nþ 1 is even, the summation in Eq. (A3) can be divided into three terms,

ðcos wÞnþ1 ¼ 1

2nþ1

Xðn�1Þ=2

l¼0

nþ 1

l

� �
exp½jðn� 2lþ 1Þw� þ nþ 1

ðnþ 1Þ=2

� �
þ

Xnþ1

l¼ðnþ3Þ=2

nþ 1

l

� �
exp½jðn� 2lþ 1Þw�

2
4

3
5:

(A4)

A careful examination of Eq. (A4) will reveal that the first and last terms in the summation can be merged into a single sum-

mation of cosine functions,

Xðn�1Þ=2

l¼0

nþ 1

l

� �
exp½jðn� 2lþ 1Þw� þ

Xnþ1

l¼ðnþ3Þ=2

nþ 1

l

� �
exp½jðn� 2lþ 1Þw� ¼ 2

2nþ1

Xðn�1Þ=2

l¼0

nþ 1

l

� �
cos½ðn� 2lþ 1Þw�;

(A5)

resulting in

ðcos wÞnþ1 ¼ 2

2nþ1

Xðn�1Þ=2

l¼0

nþ 1

l

� �
cos½ðn� 2lþ 1Þw� þ 1

2nþ1

nþ 1

ðnþ 1Þ=2

� �
: (A6)

If nþ 1 is odd, the summation can be separated into two as

ðcos wÞnþ1 ¼ 1

2nþ1

Xn=2

l¼0

nþ 1

l

� �
exp½jðn� 2lþ 1Þw� þ

Xnþ1

l¼ðnþ2Þ=2

nþ 1

l

� �
exp½jðn� 2lþ 1Þw�

2
4

3
5: (A7)

The two summations of Eq. (A7) can be merged into a single summation of cosines resulting in

ðcoswÞnþ1 ¼ 2

2nþ1

Xn=2

l¼0

nþ 1

l

� �
cos½ðn� 2lþ 1Þw�: (A8)

Equations (A6) and (A8) are the equations given in Eq. (7).

One can expand the term sin wðcos wÞn as

sin wðcos wÞn ¼ 1

2j
½expðjwÞ � expð�jwÞ� 1

2n ½expðjwÞ þ expð�jwÞ�n; (A9)

and invoking the binomial theorem on the latter term, Eq. (A9) becomes

sin wðcos wÞn ¼ 1

2j

1

2n ½expðjwÞ � expð�jwÞ�
Xn

l¼0

n
l

� �
½expðjwÞ�n�1½expð�jwÞ�l; (A10)

or equivalently,

sinwðcoswÞn ¼ 1

2n

1

2j
½expðjwÞ � expð�jwÞ�

Xn

l¼0

n

l

 !
exp½jðn� 2lÞw�

¼ 1

2n

1

2j

Xn

l¼0

n

l

 !
exp½jðn� 2lþ 1Þw� � exp½�jðn� 2l� 1Þw�
� �

: (A11)
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Due to the symmetry of the binomial terms, the summation of

two exponential terms in Eq. (A11) can be simplified to a sum-

mation of sine terms. If n is odd, the summation simplifies to

sin wðcos wÞn ¼ 1

2n

Xðn�1Þ=2

l¼0

n!ðn� 2lþ 1Þ
l!ðn� lþ 1Þ!

� �

� sin½ðn� 2lþ 1Þw�: (A12)

If n is even, the summation becomes

sin wðcos wÞn ¼ 1

2n

Xn=2

l¼0

n!ðn� 2lþ 1Þ
l!ðn� lþ 1Þ!

� �

� sin½ðn� 2lþ 1Þw�: (A13)

Equations (A12) and (A13) are the equations given in Eq.

(8). Note that the coefficients of the sine terms are computed

from

n
l

� �
� n

l� 1

� �
¼ n!ðn� 2lþ 1Þ

l!ðn� lþ 1Þ!

� �
: (A14)
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